

Basic Combustion

LAR Training May 2015

Honeywell

Typical Industrial Combustion System

• Combustion is liberation of energy from fuel to create usable heat HONEYWELL - CONFIDENTIAL

Combustion System

Requirements for Combustion:

- fuel
- oxygen
- flammable ratio
- ignition source

Air consists of approx. 21% O2 and 79% N2...

or approx. 1 part O2 for every 4 parts N2

For Natural Gas:

CH4 + 2 O2 + 8 N2 Þ CO2 + 2 H2O + 8 N2 + 1,000 Btu Heat

For Propane:

1 cubic foot of propane + 25 cubic feet of air produces 2,500 Btu heat

For Butane:

1 cubic foot of butane + 32 cubic feet of air produces 3,200 Btu heat

Air-Gas Ratios

GAS	RATIO
Natural Gas	10:1
Propane	25:1
Butane	32:1

Heating Values of Fuels (Btu/ft3)

Fuel	HHV	LHV
Methane (CH4)	1014	911
Ethane (C2H6)	1773	1622
Propame (C3H8)	2524	2322
Butane (C4H10)	3271	3018

Higher (Gross) Heating Value

When a perfect mixture of fuel and air, originally at 60°F, is ignited and then cooled to 60°F, the total heat released is the HHV. This value is seldom attained.

Lower (Net) Heating Value

LHV equals the HHV minus the heat released by the condensation of water vapor in the combustion products.

Flame Speed in FT/S vs % Theoretical Primary Air

Normal forward moving flames

Flashback conditions

Average fuel oil composition (by weight):

- 85.6% Carbon
- 12.0% hydrogen
- 35% sulfur
- 6% oxygen
- 5% nitrogen
- traces of ash & moisture

STOICHIOMETRIC or ON-RATIO Recall for natural gas: an on-ratio or stoichiometric mixture contains 10 parts air for each part fuel.

INCOMPLETE COMBUSTION

Not all of the fuel is converted into the ultimate products of combustion.

Aldehydes and carbon monoxide (CO) are produced.

EXCESS AIR

Excess air is usually expressed as a percentage of air greater than on ratio.

Thus, 10% excess air is 110% of the air required for complete combustion.

