

LAR Training

Series 8000 Pneumatic Safety Shut Off Valves

Mark Lampe

May, 18 2015

Series 8000 Pneumatic Valve

- ► Unique vertical space saving design
 - Maintenance free gas and fluid seal that eliminates packing around the stem
 - Quick exhaust and powerful spring closure in less than 1 second
- Large top mounted open/shut indicator for highly visible valve open/close status
 - Valve is easily rotated in 90° increments to fit specific mounting requirements
- ► Valve is field replaceable without breaking wet pipe
- ► Offered in a wide range of sizes and materials
 - ³/₄" 8" sizes with a range of mounting flanges
 - Cast iron, carbon steel, low temperature carbon steel, stainless steel
 - Trim options for clean and corrosive gas, oxygen, and liquids

Series 8000 Pneumatic SSOV

► The Maxon Series 8000 Pneumatic Safety Shut-off Valve

- Combines an integral solenoid in a unique, space-saving design featuring a maintenance-free gas and fluid seal
- Eliminates packing adjustments around the stem, reduces maintenance, and minimizes drag on opening and closing.
- The Series 8000 SSOV well suited for use in the most demanding industrial heat, general process control, and oil and gas installations.

► Application Flexibility

- Available in a wide range of sizes from ³/₄" to 8"
- Different materials of construction including cast iron, carbon steel, low temperature carbon steel and stainless steel body assemblies
- Internal trim options to accommodate general purpose gases, corrosive gases, oxygen, and liquids such as oil.

Valve Status Indicator

- ► Highly visible indication valve position indicator
- ► Valve position color contrast is easily visible and distinguishable to the user

- New visual indicator provides color contrast to identify valve position and flow
 - Red indicates no flow, or valve closed position; Green indicates flow, or valve open position
 - Red indicates flow, or valve open position; Green indicates no flow, or valve closed position
 - Black indicates no flow, or valve closed position; Yellow indicates flow, or valve open position
- Varying color schemes offer flexibility to meet needs in all production areas

Temperature Range

- ► High temperature Fire Safe Rated Series 8000 is validated to API-6FA (6A/6D) or to API 607, both standards are based on BS6755
 - The test involves exposing the valve to flame temperatures of 760°- 980°C
 - API-6FA and 607 both require burn period of 30 minutes, which is among the most stringent of the various tests performed

API 607 is "Fire Safe for Soft-Seated Quarter Turn Valves" API-6FA is designated "Specification for Fire Test for Valves"

Temperature Range

Low Temperature Option to -50°C

- Solenoid valves and cylinders modified to include low temperature seals
 - Low temp solenoids available in all currently available voltages (24VDC, 24VDC IS, 120VAC 50/60 Hz, 240VAC 50/60 Hz)
 - Low temp cylinders available in NEMA 4 or NEMA 4X type actuators
- Utilize Omniflex o-rings in Maxon valve body assembly
 - Supplying the highest quality seals available for aggressive fuels
 - Rated for low temperature service to -56°C (-70°F)
- CSA, FM, AGA, and European approvals maintained
 - Closing time within requirements of all standards (<1 second)
 - Seat and external leakage within allowable limits
 - Low temperature valves also meet FCI 70-2 Class
 VI seat leakage requirements

8000 Valve Performance

Allowable Leakage

Agencies subject valves to rigorous test addressing construction, mechanical and electrical performance.

Cycling and leakage requirements for a typical 3-inch gas valve from various agencies.

Shut-Off	No. of Cyc	Allowable			
Valve Standard	Maximum Minimum Published Temp Temp		Ambient Temp	Leakage (ccm)	
FM 7400	0	0	20,000	6.67	
CSA 6.5 C/I	90,000	10,000	0	10.81	
EN 161	25,000	25,000	50,000	1.00	

Metal on Metal Seating

► What does this really mean?

"Wear in, not out"

- **Proper trim selection** for the application will allow 10+ years of operation
- Precision ground and polished combination of surface finish, hardness, material selection
- Increased cycle rate (partial or full) will improve seating surface; i.e. "wear in" function
- **Self-cleaning** the seating surfaces of the disc and seat remain in contact throughtout valve stroke
- Self-correction cycle the valve to tighten seat leakage.

Shut-off Sealing Mechanism

- ► Unique metal-to-metal shut off valve mechanism
 - Meets FCI 70-2 control valve standard for Class VI seat leakage
 - Uses a matched set of finely ground shut-off rings mated with a rising stem.
 - Provides a complete, tight seal that that does not rely on soft seals (that tends to wear out with repeated movement)
- Cycling the valve provides a self-cleaning, corrective action
 - Keeps the valve's performance consistent over longer periods of time
 - Actually improves seal with repeated use
 - Valve's performance is fully enhanced by using Partial Stroke technology
 - Valve wears in, not out!

Metal seat rings are finely honed for a zero tolerance fit with the rising stem

Seat Leakage Compliance

Seat leakage: Installation codes such as NFPA, 85, 86 and 87 calls for listed valves.

Maxon Specific Sizes

Maxon 8000 valves meet FCI 70-2 for Class VI seat leakage

(comparatively most stringent)

		FCI 70-2	(Class VI)	ANSI Z21	.21/CSA 6. 3.9	5, & CGA		FM7400	11		EN 161	÷.
Nominal Size	Bore	ml/min cc/min	Bubbles/ Minute	cc/Hr	ml/min cc/min	Bubbles/ Minute	cc/hr	ml/min cc/min	Bubbles/ Minute	ml/Hr cc/Hr	ml/min cc/min	Bubbles/ Minute
0.75	0.69	0.15	1	235.00	3.92	26	400	6.67	44	40	0.667	4
1	0.69	0.15	1	235.00	3.92	26	400	6.67	44	40	0.667	4
1.25	0.971	0.15	1	235.00	3.92	26	400	6.67	44	60	1.000	7
1.5	1.127	0.19	2	264.85	4.41	29	400	6.67	44	60	1.000	7
2	1.443	0.3	2	339.11	5.65	38	400	6.67	44	60	1.000	7
2.5 Rec Port	2.216	0.52	4	520.76	8.68	58	400	6.67	44	60	1.000	7
3 Rec Port	3.103	0.9	6	729.21	12.15	81	400	6.67	44	60	1.000	7
2.5CP	2.26	0.525	4	531.10	8.85	59	400	6.67	44	60	1.000	7
3CP	2.76	0.75	5	648.60	10.81	72	400	6.67	44	60	1.000	7
4CP	2.76	0.75	5	648.60	10.81	72	400	6.67	44	100	1.667	11
6"	4.5	2.275	16	1057.50	17.63	118	400	6.67	44	100	1.667	11

New features and enhancementes to improve compatibility in the general combustion an O&G markets

▶8" Size 8000 Safety Shut-off Valve

- 150# and 300# ANSI as well as DIN flanges in carbon steel, low temperature carbon steel and stainless steel body assemblies
- Offered with the same fluid and pressure specifications as the 6" version with internal trim options to handle general purpose or corrosive gases and oxygen compatibility
- The 8" valve is fully NACE compliant, and conforms to Fire Safe code API 6FA

▶3/4" Size 8000 Safety Shut-off Valve

- ANSI/ISO threaded, socket welded nipple, socket welded nipple, and socket welded nipple with #150 and 300# flange mountings
- Available in carbon steel, low temperature carbon steel, and stainless steel

► External Redundant Solenoids

- Dual shut-off solenoids provide additional SIL2 certification levels to offer a higher level of protection against potential solenoid failure.
- The redundant solenoid acts in series with the internal solenoid. If either solenoid trips, the valve will close/open (STO).

External Redundant Solenoids with Manual Reset

- Combination of both external redundant solenoids with manual reset option.
- If either solenoid trips, the valve will close/open (STO) and must be reset manually at the site of the valve before operations can resume.

- ► Material Certifications
 - Material certification paperwork for full compliance can now be ordered directly through the configurator.
- ► NDE (non-destructive engineering tests)
 - Visual inspection (VI)
 - Liquid Penetrate (PT)
 - Positive Material Identifications (PMI)
 - Magnetic Particle testing (MT)
 - Additional tests that are available with as specials
 - wUltrasonic (UT), Radiography (RT)
- PED (pressure equipment directive)
 - Certification for EMEA compliance (Mid 2015)

- Non-Destructive Engineering (NDE)
 - Certified testing certificates are now available as a stock offering
 - On bonnet and valve castings as well as valve weld
 - Each is priced per valve
 - For larger lot pricing, call for quote on
 - Liquid Penetrate (PT), Positive Material Identifications (PMI), Magnetic Particle testing (MT)
 - By special request Ultrasonic (UT), Radiography (RT)

SIL - Safety Integrity Level

Valves are part of a safety instrumented system/function

Can be arrange to meet SIL performance levels potentially as high as SIL-3

- ►SIL Approvals for Maxon Valves
 - Third party reviews valve desing, application details as well as quaity sistems, returns, production data, etc.
 - FMEDA developed-Includes failure rate data and sample calculation on PFD (probablity of failure on demand), calculates proof test intervals (i.e. maintenance Schedule)

• Certification to IEC 61508 – evaluates mechanical performance of valves – Reliability data can be used in assessments per IEC 61508 and 61511 for SIL verification.

^{*}Available customers upon request

Agency Approvals

Agency approvals and certifications

		irpose Valves 011, 2021 Series	Hon-l	ncendiveMon-Sparking Valves #112, #122, 1912, 1922 Series [8]		Intrinsically Safe Valves 2113, 2123, 2013, 2023 Series [4]
	Standard's	Markings	Standards	<u>Untings</u>	Stantants	Markings
FN Approvals	FM 7400	APPROVED	FU 7400 FU 3611 FU 3600 FU 3810	Class I, Dir 2, Garage ABCD, TR Class II, Dir 2, Garage FG, TR Class III, Dir 2, T4	FU MO FU S10 FU S00 FU S10	Class I, Ohr 1, Garage ABCD, TS Class II, Ohr 1, Garage EFG, TS Class III, Ohr 1, TS APPROVED
CSA International	CSA 6.5	∰ ∗c1	CSA 6.5 CSA 22.2 No. 213 CSA 22.2 1010.1 CSA E60079-0 CSA E60079-15	Class I, Chr Z, Garage ABCD, TH Class II, Dhr Z, Garage FG, TH Class II, Dhr Z, T4 Ex nA IIC T4 Ta - 40C (rith standard colored) (2mm Z approach) Ex nA IIC T5 Ta - 50C (rith IS sedembl) (2mm Z approach)	CSA 6.5 CSA 72.2 No. 157 CSA 72.2 101 D.1 CSA E60095-0 CSA E60095-11	Class I, Chr 1, Garage ABCD, TS Class II, Chr 1, Garage BFG, TS Class II, Chr 1, TS Ex is IIC TS Ts -60C (Zane D'Appressi)
Europe au Approvals [1]	EN 161 EN 19774	CURLABR2 EC PN: CINCHAS	EN 161 EN 13774	CLAL:A, BR2 EC PM: CMCM5	EN 161 EN 13774	CLAC: A BR 2 BC PH: CMCMS
Europe au Approvals [2] (Hazardous Localious)	Not Applicable		Not Applicable		EN 6007 5-0: 2006 EN 6007 5-1 1: 2007 EN 6052 5: 1995 EN 61241-1 1: 2006 EN 13453-1: 2008 EN 13453-6: 2008	EX BC ELL IC IS THE SIC IN SIC
EC Approvals	EC 610004 EC 61508		EC 61508		EC 610004 EC 61508	

(i) Parliat certifici în meetile în irraing 8 as Appliance Oreche (2019/142/62), Lun Vallage Oreche (2019/646), EHC Oreche (2019/646)

[3] Parl act collicit is meetile in leading: ATEX. (heche (545/EC)

[4] When used with a costoner-supplied, extensity manufed submath, MACIN \$112,6122,0112, 0122 values will only compfit Apparation For \$11,7500 and \$250 constants.

Fig When as of with a constance supplied, externally manufed submatel, MARCH E113, E123, C013, C023 values will only compFM /pperval to FM 3018, 3000 and 3018 shouldness.

Assembly Number Pages

To determine the configured item number:

Selectione choice from each of the following five categories

Configured Item Number								
Valve Size	Flow Capacity	Pressure Rating	Normal Position	Area Classification				

<u>Valve Size</u>	Flow Capacity	Area Classification
075 - 3/4" (DN 20)	S - Standard	1 - General Purpose
100 - 1" (DN 25)	C - CP Body Construction	2 - Non-incendive, Class I, II and III Division 2
125 - 1-1/4" (DN 32)		3 - Intrinsically Safe, Class I, II and III Division 1
150 - 1-1/2" (DN 40)	Pressure Rating	(and ATEXZone 1/21 when ordered with the ATEX
200 - 2" (D N 50)	80 - Pneumatic Standard Pressure	IS solenoid) [1]
250 - 2-1/2" (DN 65)	81 - Pneumatic High Pressure	4 - Valve body only
300 - 3" (D N 80)		
400 - 4" (D N 100)	Normal Position	[1]122°F maximum ambient temperature limit
600 - 6" (D N 150)	1 - Normally-Closed Shut-Off Valve	
800 - 8" (D N 200)	2 - Normally-Open Vent Valve	
()		

Example:

To order a 3" C P body, high pressure rating, normally-closed shut-off valve for general purpose use, make the following selections:

Valve Size	.300
Flow C apacity	. С
Pressure Rating	.81
Normal Position	.1
Area Classification	.1

The configured item number for this valve is: 300 C 8111

Segment choices for Series 8000 Pneumatic Gas Valves are shown on the following pages.

What Keeps You Awake at Night?

Safety

- Protect people, assets, and process
- Billions lost per year in Industry

Reliability

- Improve Availability Reduce Downtime
- Revenue lost each year due to unplanned production losses

Environmental

- Improve Emissions and Compliance
- Automate and control more efficient thermal processes & emissions

Maximize Safety and Reliability

- ► Safety is the number one concern
- ► There are Prescriptive and Directive Standards to Consider like NFPA86 and IEC61508/11
- ► Code compliance is complicated, complex and everchanging
- ► Are the existing standards sufficient?

Achieving Functional Safety

FUNCTIONAL SAFETY LIFE CYCLE

Role of a SIS

Relation Between SIS, SIF, SIL

SIF: A Safety Instrumented Function (SIF) is a safety function with a specified Safety Integrity Level (SIL) which is implemented by a SIS in order to achieve or maintain a safe state.

A BMS System

A Burner Management Systems comprises of Various Safety Instrumented Functions

Fuel Train

- Pressure Relief Valve
- Shut- Off Valves

Control Panel/PLC

- PLC
- High Temp Limit
 Pressure Switch Control

Sensors

- Flame Detector

Prescriptive Standards/Guidelines

FIGURE 7.7.1(C)(c) Fuel Gas Ignition System — Individually Controlled Igniters (Automatic).

Directive Standards (Performance Based)

Common Cause Failures

AVERAGE PROBABILITY OF FAILURE ON DEMAND								
	$= \frac{\text{Tolerable accident frequency } (F_T)}{\text{Frequency of accidents without protection } (F_{NP})} = \frac{1}{\text{RRF}}$							
PFDavg	Simplified	equations						
	Without common causes	With common causes (Beta factor)						
1001	$\lambda_{DU} \times \frac{TI}{2}$	not applicable						
1002 1002D	$\lambda_{DU_1} \times \lambda_{DU_2} \times \frac{Tl^2}{3}$	$\frac{\left[\left(1-B\right)\times\left(\lambda_{DU}\times TI\right)\right]^{2}}{3}+\frac{\left(B\times\lambda_{DU}\times TI\right)}{2}$						
1003	$\lambda_{DU_1} \times \lambda_{DU_2} \times \lambda_{DU_3} \times \frac{TI^3}{4}$	$\frac{\left[\left(1-B\right)\times\left(\lambda_{DU}\times TI\right)\right]^{3}}{4}+\frac{\left(B\times\lambda_{DU}\times TI\right)}{2}$						
2002	$(\lambda_{DU_1} + \lambda_{DU_2}) \times \frac{TI}{2}$	$\left[(1-B) \times (\lambda_{DU} \times TI) \right] + \frac{(B \times \lambda_{DU} \times TI)}{2}$						
2003	$\begin{bmatrix} \left(\lambda_{\text{DU}_1} \times \lambda_{\text{DU}_2}\right) + \left(\lambda_{\text{DU}_1} \times \lambda_{\text{DU}_3}\right) \\ + \left(\lambda_{\text{DU}_2} \times \lambda_{\text{DU}_3}\right) \end{bmatrix} \times \frac{TI^2}{3}$	$\left[(1-B) \times (\lambda_{DU} \times TI) \right]^2 + \frac{(B \times \lambda_{DU} \times TI)}{2}$						
1001 (Et < 100%)	$\lambda_{DU} \left[\left(Et \times \frac{TI}{2} \right) + \left(1 - Et \right) \frac{SL}{2} \right]$	TI: Proof Test Time Interval Et: Test Effectiveness λ _{DU} : Dangerous Undetected Failures						

Shut-off Sealing Mechanism

- ► Unique metal to metal shut off valve mechanism
 - Meets FCI 70-2 control valve standard for Class VI seat leakage
 - Uses a matched set of finely ground shut-off rings mated with a rising stem.
 - Provides a complete, tight seal that that does not rely on soft seals (that tends to wear out with repeated movement)
- Cycling the valve provides a self-cleaning, corrective action
 - Keeps the valve's performance consistent over longer periods of time
 - Actually improves seal with repeated use
 - Valve's performance is fully enhanced by using Partial Stroke technology
 - Valve wears in, not out!

PST Assessment by Exida

Table 2 Failure Rates Series 8000 Valve

	Fai	lure rate (F	IT)	Failure rate w/PVST (FIT)			
Failure category	Close on Trip		FO-F/SR	Close on Trip		EO E/SB	
	FC-F/SR	FC-D/SR	FU-F/SK	FC-F/SR	FC-D/SR	FO-F/SR	
Fail Safe Detected	0	0	0	890	890	947	
Fail Safe Undetected	890	890	947	0	0	0	
Fail Dangerous Detected	0	0	0	422	422	422	
Fail Dangerous Undetected	834	1389	777	412	967	355	
No Effect	1366	811	1366	1366	811	1366	

Table 3 Failure Rates Series 8000 Valve according to IEC 61508 ed2, 2010 (FIT).

Application	λ _{sp}	λ _{su} ²	λ _{DD}	λου	SFF ³
FC-F/SR	0	890	0	834	51.6%
FC-F/DS	0	890	0	1389	39.0%
FO-F/SR	0	947	0	777	55.0%
FC-F/SR with PVST	890	0	422	412	76.1%
FC-F/DS with PVST	890	0	422	967	57.6%
FO-F/SR with PVST	947	0	422	355	79.4%

Max Uptime Effect

Partial Stroke Test (PST)

A solution for a SIL3 compliant safety combustion system requires SIL2 PSCHECK

- ► The PSCHECK Technology with Partial Stroke Test is SIL2 compliant
- ► The Series 8000 pneumatic safety shut-off valve is SIL3 capable
- ► PSCHECK when combined with the 8000 valve is able to achieve a SIL3 rating for the complete system

Will not interrupt any of the process flow nor will it impact the performance of the burner management system

MAXON PSCHECK Advantage

- ► Installation and maintenance on the PSCHECK System is substantially simplified
- ► Use of industry proven 8000 pneumatic safety shut off valves
 - Up to 9 valves per panel (panel sizes vary)
 - Can mix different valve sizes, MOC, trim options
- Wiring directly from a panel to the valve
- ► No additional hardware, software, or communication links required
- Lowers installation time, maintenance, total cost for system ownership

MAXON PSCHECK Features

► The valve is operating properly

► A customizable lower limit soft alarm

- Will identify potential valve degradation and show health trending information over the life of the valve.
- This alarm will prompt an alert that identifies a need for valve repair or replacement during future scheduled maintenance or process shut-downs.

- A factory set hard alarm limit to identify when the valve does not pass the partial stroke test
 - Prompts an alert that the valve failed the PST test and is not likely to close when needed.

MAXON PSCHECK Features

- ► Maxon's PST test will identify a potential degradation or a hard failure of the 8000 pneumatic valve
 - Uses patented Maxon technology
 - Checks the amount of time required for the valve to 'trip' signaling a capability to either open or close.
- ► See valve trending and history relative to soft and hard alarm settings
 - Three different settings to optimize the view
 - Change the vertical axis to better see the short and long-term trending
 - Trend data against initial valve health signature
- ► View test schedule
- ▶ Date of last PST test
- Launch a manual test

MAXON PSCHECK Features

- Panels can be certified to
 - Class I Div I (Z-purge)
 - Class I Div 2
- ► Hazardous locations
- ► General purpose type 12X or 4X enclosure rating
- ► Additional features are available as special order:
 - Panel heating and cooling
 - Air line pressure tests

► Demo Units

- Demo unit is fully functional single valve system showcasing the software capabilities
- Limited quantity available for sales presentations

