
Eclipse AirHeat Burners

AH-MA Series Technical Information Edition 2.15

Version 2

Copyright

Copyright 2004 by Eclipse, inc. All rights reserved worldwide. This publication is protected by federal regulation and shall not be copied, distributed, transmitted, transcribed or translated into any human or computer language, in any form or by any means, to any third parties, without the express written consent of Eclipse, inc.

Disclaimer Notice

In accordance with the manufacturer's policy of continual product improvement, the product presented in this brochure is subject to change without notice or obligation.

The material in this manual is believed adequate for the intended use of the product. If the product is used for purposes other than those specified herein, confirmation of validity and suitability must be obtained. Eclipse warrants that the product itself does not infringe upon any United States patents. No further warranty is expressed or implied.

Liability & Warranty

We have made every effort to make this manual as accurate and complete as possible. Should you find errors or omissions, please bring them to our attention so that we may correct them. In this way we hope to improve our product documentation for the benefit of our customers. Please send your corrections and comments to our Technical Documentation Specialist.

It must be understood that Eclipse's liability for its product, whether due to breach of warranty, negligence, strict liability, or otherwise is limited to the furnishing of replacement parts and Eclipse will not be liable for any other injury, loss, damage or expenses, whether direct or consequential, including but not limited to loss of use, income, or damage to material arising in connection with the sale, installation, use of, inability to use, or the repair or replacement of Eclipse's products.

Any operation expressly prohibited in this manual, any adjustment, or assembly procedures not recommended or authorized in these instructions shall void the warranty.

Document Conventions

There are several special symbols in this document. You must know their meaning and importance.

The explanation of these symbols follows below. Please read it thoroughly.

How To Get Help

If you need help, contact your local Eclipse representative. You can also contact Eclipse at:

1665 Elmwood Rd. Rockford, Illinois 61103 U.S.A. Phone: 815-877-3031 Fax: 815-877-3336 http://www.eclipsenet.com

Please have the information on the product label available when contacting the factory so we may better serve you.

ECLIPSE [•]	www.eclipsenet.com
Product Name Item #	
S/N DD MMM YYYY	

	This is the safety alert symbol. It is used to alert you to potential personal injurt hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.
	Indicates a hazardous situation which, if not avoided, will result in death or serious injury.
WARNING	Indicates a hazardous situation which, if not avoided, could result in death or serious injury.
	Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.
NOTICE	Is used to address practices not related to personal injury.
NOTE	Indicates an important part of text. Read thoroughly.

Table of Contents

Introduction4
Product Description4
Audience4
Purpose4
AH-MA Documents4
Related Documents4
Safety
Safety Warnings5
Capabilities
Operator Training5
Replacement Parts5
System Design6
Design Structure
Step 1: Burner Design6
Step 2: Control Methodology15
Step 3: Ignition System
Step 4: Flame Monitoring System
Step 5: Gas Valve Train Selection17
Appendixi
Notesii

Introduction

1

Product Description

Eclipse AH-MA V2.1 Air Heat burners produce a uniform, odorless and smokeless flame ideal for heating fresh air in make-up and process air heating applications. The AH-MA design provides stable operation over a wide range of velocities, inputs and fuels.

AH-MA V2.1 burners are line type burners constructed of cast iron or aluminum burner bodies and diverging stainless steel air wings. The burner bodies supply fuel to the center of the air wings to control the air and fuel mixture inside the burner and to optimize emissions and efficiency. Completely corrosion resistant design options are available using aluminum burner bodies or electroless nickel plated cast iron burner bodies.

The AH-MA V2.1 Air Heat burner is assembled from straight sections, tees and crosses to produce nearly any configuration required. Large burners can be built as a combination of staged, individually controlled sections to increase turndown.

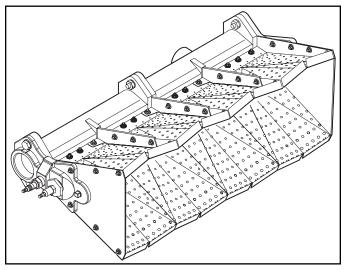


Figure 1.1 AH-MA AirHeat Burner

<u>Audience</u>

This manual has been written for personnel already familiar with all aspects of an air heat burner and it's addon components, also referred to as the burner package.

These aspects are:

- Design/Selection
- Installation
- Use
- Maintenance

The audience is expected to be qualified and have experience with this type of equipment and its working environment.

Purpose

The purpose of this manual is to make sure that you carry out the installation of a safe, effective and trouble-free system.

AH-MA Documents

Installation Guide No. 160

Used with Datasheet to complete Installation

Datasheet No. 160

• Required to complete design and selection

Design Guide No. 160

This document

Related Documents

- EFE 825 (Combustion Engineering Guide)
- Eclipse Bulletins and Information Guides: 818, 820, 826, 832, 852, 854, 856

Safety

Important notices which help provide safe burner operation will be found in this section. To avoid personal injury and damage to the property or facility, the following warnings must be observed. All involved personnel should read this entire manual carefully before attempting to start or operate this system. If any part of the information in this manual is not understood, contact Eclipse before continuing.

Safety Warnings

DANGER

- The burners, described herein, are designed to mix fuel with air and burn the resulting mixture. All fuel burning devices are capable of producing fires and explosions if improperly applied, installed, adjusted, controlled or maintained.
- Do not bypass any safety feature; fire or explosion could result.
- Never try to light a burner if it shows signs of damage or malfunction.

- The burner and duct sections are likely to have HOT surfaces. Always wear the appropriate protective equipment when approaching the burner.
- Eclipse products are designed to minimize the use of materials that contain crystalline silica. Examples of these chemicals are: respirable crystalline silica from bricks, cement or other masonry products and respirable refractory ceramic fibers from insulating blankets, boards, or gaskets. Despite these efforts, dust created by sanding, sawing, grinding, cutting and other construction activities could release crystalline silica. Crystalline silica is known to cause cancer, and health risks from the exposure to these chemicals vary depending on the frequency and length of exposure to these chemicals. To reduce the risk, limit exposure to these chemicals, work in a well-ventilated area and wear approved personal protective safety equipment for these chemicals.

NOTICE

This manual provides information regarding the use of these burners for their specific design purpose. Do not deviate from any instructions or application limits described herein without written approval from Eclipse.

Capabilities

Only qualified personnel, with sufficient mechanical aptitude and experience with combustion equipment, should adjust, maintain or troubleshoot any mechanical or electrical part of this system. Contact Eclipse for any needed commissioning assistance.

Operator Training

The best safety precaution is an alert and trained operator. Train new operators thoroughly and have them demonstrate an adequate understanding of the equipment and its operation. A regular retraining schedule should be administered to ensure operators maintain a high degree of proficiency. Contact Eclipse for any needed site-specific training.

Replacement Parts

Order replacement parts from Eclipse only. All Eclipse approved valves or switches should carry UL, FM, CSA, CGA and/or CE approval where applicable.

System Design

3

Design Structure

Designing a burner system is a straightforward exercise of combining modules that add up to a reliable and safe system.

The design process is divided into the following steps:

- 1. Burner Design
 - a. Calculating maximum input requirements
 - b. Choosing design heat input at high fire
 - c. Determining needed length of the burner
 - d. Calculating minimum input requirements
 - e. Layout of the burner sections
 - f. Sizing and layout of the gas manifold
 - g. Sizing the profile plates
 - h. Burner staging
- 2. Control Methodology
- 3. Ignition System
- 4. Flame Monitoring System
- 5. Gas Valve Train Selection

NOTE: Information in Datasheet 160 is necessary to complete some of the procedures.

Step 1: Burner Design

Calculating maximum input requirements

To calculate the total burner maximum input required:

Maximum Input (Btu/h) = 1.3 x SCFM x Δ T (max)

 This is an approximation based on the gross heating value of the Eclipse Combustion Engineering Guide (EFE-825).

Choosing design heat input at high fire

See Datasheet 160 for the following:

- 1. Use the "Operating Range" chart to determine the maximum and minimum heat inputs per foot of burner based on the known air pressure drop.
- 2. Use the "Flame Length" chart to check flame length versus available distance downstream of the burner for uniform temperature distribution.

Determining the length of the burner needed

Burner length (ft) = total burner max. heat input (Btu/h) heat input per foot (Btu/h/ft)

<u>NOTE</u>: Round fractional lengths (in feet) up to the next half-foot

Calculating minimum input required

- 1. Minimum Input (Btu/h) = 1.3 x SCFM x Δ T (min)
- 2. Minimum Heat Input per foot (Btu/h/ft) =

total burner min. heat input (Btu/h) burner length (ft)

- 3. With the minimum heat input per foot, go to the "Operating Range" chart in Datasheet 160 and confirm that the burner can operate at the input for the air pressure drop the burner will see. If the minimum input required is too low, there are two options to obtain this operating condition:
 - a. Use a staged burner control. See Burner Fuel Staging pg 16 and Contol Methodology pg 15.
 - b. Modulate the air flow to a lower pressure drop, thus lowering the minimum input capability of the burner.

Example: A make-up air heat burner will be used to heat 60,000 SCFM air from $0^{\circ}F$ to $80^{\circ}F$ maximum, and from $75^{\circ}F$ to $80^{\circ}F$ minimum. Air DP across the burner is designed to be 0.7"w.c. at high fire. The fuel is natural gas.

1. Max. Input = 1.3 x 60,000 x 80 = 6,240,000 Btu/h

2. From the "Operating Range" chart in Datasheet 160, the maximum heat input at 0.7"w.c. air pressure drop is 80,000 Btu/h/ft. The flame length from the "Flame Length" chart in Datasheet 160 is 30 inches.

Burner length = 6,240,000 Btu/h = 7.8 ft; round to 8 ft 800,000 Btu/h/ft

- 3. Min. Input = 1.3 x 60,000 x 5 = 390,000 Btu/h
- 4. Minimum per foot = 390,000 Btu/h = 48,750 Btu/h/ft 8 ft
- 5. From the "Operating Range" chart in Datasheet 160, the minimum input at 0.7"w.c. is 20,000 Btu/h/ft. Therefore, the burner can operate over the desired input range.

Fuel Type

Table 3.1 Fuel Type

Fuel	Symbol	Gross Heating Value	Specific Gravity	WOBBE Index	
Natural Gas	CH ₄ 90%+	1000 BTU/ft ³ (40.1 MJ/m ³)	0.60	1290 BTU/ft ³	
Propane	C ₃ H ₈	2525 BTU/ft ³ (101.2 MJ/m ³)	1.55	2028 BTU/ft ³	
Butane	C ₄ H ₁₀	3330 BTU/ft ³ (133.7 MJ/m ³)	2.09	2303 BTU/ft ³	
BTU/ft ³ @ standard conditions (MJ/m ³ @ normal conditions)					

If using an alternative fuel supply, contact Eclipse with an accurate breakdown of the fuel components.

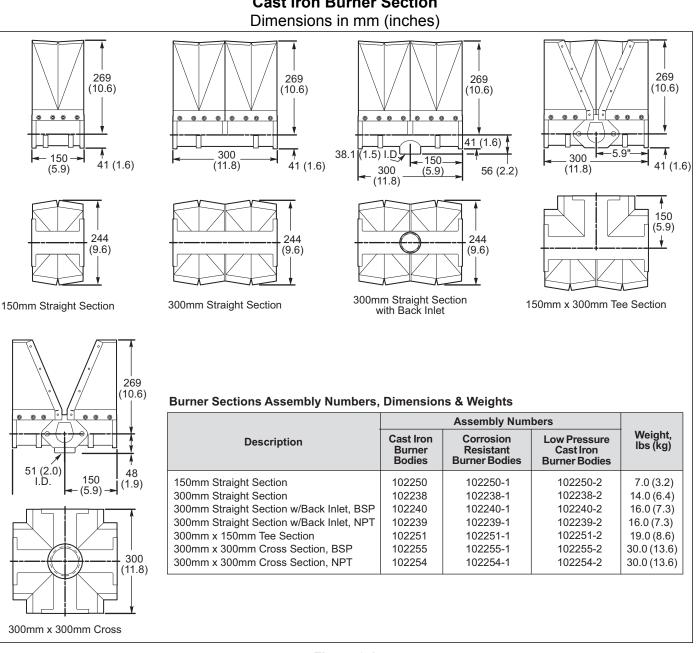
Layout of the burner sections

Once the lineal feet of the burner has been determined, use Figure 3.2 and the criteria below to define the burner geometry.

For optimum burner performance and a uniform temperature profile, even gas and air flow throughout the burner is essential. The following guidelines should be used to lay out the burner:

- 1. The layout of the burner should be based on the profile gaps required around the burner. The gaps between internal sections of the burner should be similar in size to gaps on the top and bottom of the burner.
- 2. Include the proper number of gas feed inlet sections. Use Table 3.1 as a guide to the number and size of gas feed inlets required based on the length of the burner.
- 3. Space gas inlets equally to assure uniform gas distribution.

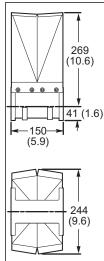
Gas Inlet Pipe Size	Direction	Section Type	Gas Pressure	Max. Burner Length Per Inlet*
1"	Side	300mm straight section	standard	1
1-1/2"	Rear	300mm straight section, cast iron	standard	4
1-1/2"	Side	300mm straight section	standard	3
2"	Rear	300mm straight section, aluminum	standard	4
2"	Rear	300mm x 300mm cross section	standard	6
2"	Side	300mm straight section	standard	4
1"	Side	300mm straight section	low	.5
1-1/2"	Rear	300mm straight section, cast iron	low	2
1-1/2"	Side	300mm straight section	low	1.5
2"	Rear	300mm straight section, aluminum	low	2
2"	Rear	300mm x 300mm cross section	low	4
2"	Side	300mm straight section	low	2

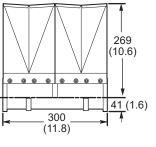

Table 3.1 Gas Feed Inlet Capacities

* Number of feet or 300mm sections

Example: A six-foot burner for standard gas pressure will use 2" NPT rear inlets to supply gas. How many gas inlets are required?

Solution: Each 2" back inlet can supply 4 feet of burner.


Therefore, 6/4 = 1.5, or 2 inlets are required



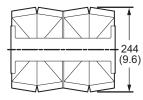
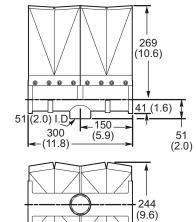
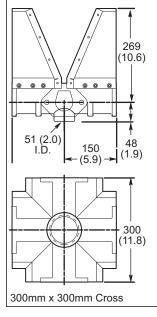

Cast Iron Burner Section

Figure 3.1

Aluminmum Burner Section Dimensions in mm (inches)



150mm Straight Section


300mm Straight Section

150mm x 300mm Tee Section

Burner Sections Assembly Numbers, Dimensions & Weights

	Assembl		
Description	Aluminum Burner Bodies	Low Pressure Aluminum Burner Bodies	Weight, Ibs (kg)
150mm Straight Section	102250-3	102250-4	3.5 (1.6)
300mm Straight Section	102238-3	102238-4	7.0 (3.2)
300mm Straight Section w/Back Inlet, BSP	102240-3	102240-4	8.0 (3.6)
300mm Straight Section w/Back Inlet, NPT	102239-3	102239-4	8.0 (3.6)
300mm x 150mm Tee Section	102251-3	102251-4	9.0 (4.1)
300mm x 300mm Cross Section, BSP	102255-3	102255-4	14.0 (6.4)
300mm x 300mm Cross Section, NPT	102254-3	102254-4	14.0 (6.4)

Figure 3.1 Continued

End Plate Assemblies Dimensions in mm (inches)

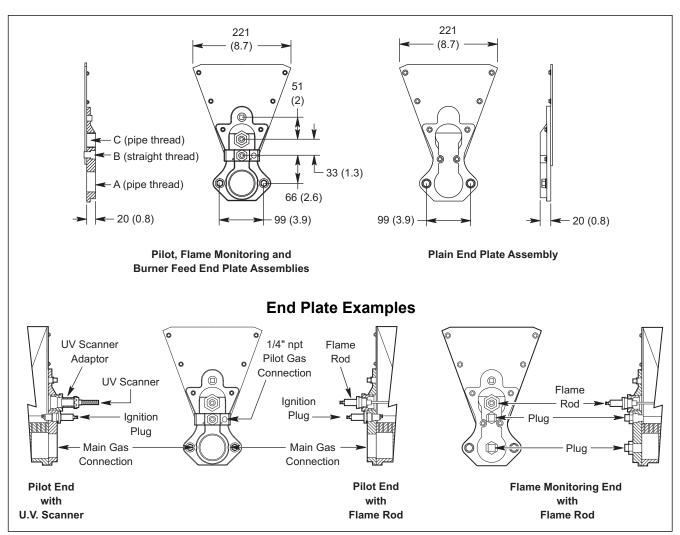


Figure 3.1 Continued

	Assembly	y Numbers	D	Weight		
Description	Cast Iron End Plates*	Corrosion Resistant End Plates	А	B, mm (inches)	С	Weight, Ibs (kg)
Plain End Plate	102257	102257-1	-	-	-	4 (1.8)
Pilot End Plate, No Gas Feed	10010970	10010970-1	-	14 (0.6)	1" NPT	4 (1.8)
Pilot End Plate, 1" Gas Feed NPT	10010972	10010972-1	1" NPT	14 (0.6)	1" NPT	4 (1.8)
Pilot End Plate, 1" Gas Feed BSP	10010974	10010974-1	1" BSP	14 (0.6)	1" BSP	4 (1.8)
Pilot End Plate, 1.5" Gas Feed NPT	10010975	10010975-1	1.5" NPT	14 (0.6)	1" NPT	4 (1.8)
Pilot End Plate, 1.5" Gas Feed BSP	10010976	10010976-1	1.5" BSP	14 (0.6)	1" BSP	4 (1.8)
Pilot End Plate, 2" Gas Feed NPT	10010977	10010977-1	2" NPT	14 (0.6)	1" NPT	4 (1.8)
Pilot End Plate, 2" Gas Feel BSP	10010978	10010978-1	2" BSP	14 (0.6)	1" BSP	4 (1.8)
Pilot End Plate, Angled Flame Monitor NPT	10010979	10010979-1	-	14 (0.6)	1" NPT	4 (1.8)
Pllot End Plate, Angled Flame Monitor BSP	10010980	10010980-1	-	14 (0.6)	1" BSP	4 (1.8)
Flame Monitoring End Plate, BSP	101237	101237-1	-	-	1" BSP	4 (1.8)
Flame Monitoring End Plate, NPT	101238	101238-1	-	-	1" NPT	4 (1.8)
Burner Feed/Flame Monitoring End Plate, BSP	101233	101233-1	1-1/2" BSP	**	1" BSP	4 (1.8)
Burner Feed/ Flame Monitoring End Plate, NPT	101234	101234-1	1-1/2" NPT	**	1" NPT	4 (1.8)
Burner Feed End Plate, BSP	101235	101235-1	1-1/2" BSP	-	-	4 (1.8)
Burner Feed End Plate, NPT	101236	101236-1	1-1/2" NPT	-	-	4 (1.8)

End Plate Assembly Numbers, Dimensions and Weights

* Standard cast iron end plates with powder coated surface finish are supplied on burners with aluminum gas manifolds.

** 14mm (0.6") plug may be replaced by an ignition plug for direct spark ignition of burners 450mm (18") or less.

Description	Part Number
Mtg. Brkt. for Hanger Rods	21509
Ignition Plug	13047-1
Flame Rod ¹	13093
Divider Plate for Staging	76506
UV Scanner Adapter - 1/2" NPT ²	202010
UV Scanner Adapter - 3/4" NPT	202011
UV Scanner Adapter - 1" NPT ³	18767
Pilot Gas Cock	12659

² Adapter fits Eclipse straight, Eclipse 90 and Honeywell

Accessories

Choose the gas manifold size to evenly supply gas to each of the sections, using Table 3.2 and Figure 3.1.

Table 3.2 Gas Pipe Sizing and Layout

Sizing and layout of the gas manifold

Maximum Gas Input, MMBtu/h (MW)	Manifold Pipe Size	Maximum Gas Input, MMBtu/h (MW)	Main Gas Pipe Size
1.4 (0.4)	1-1/2"	0.3 (0.1)	1/2"
2.5 (0.7)	2"	0.6 (0.2)	3/4"
5.2 (1.5)	2-1/2"	1.1 (0.3)	1"
8.0 (2.3)	3"	3.2 (0.9)	1-1/2"
14.0 (4.1)	4"	6.6 (1.9)	2"
45.0 (13.2)	6"	13.0 (3.8)	2-1/2"
80.0 (23.4)	8"	20.0 (5.9)	3"

³ Adapter fits Eclipse self-check and Honeywell C7035A NOTE: Maximum inputs shown for natural gas only. For propane, multiply inputs by 1.5; for butane, multiply inputs by 1.7.

or flame monitoring endplate

C7027A UV scanners

UV scanners

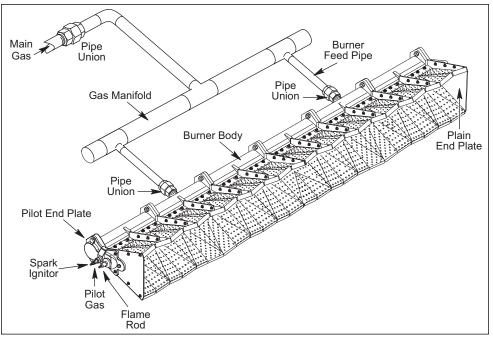


Figure 3.2 Gas Manifold Sizing and Layout

Example: A gas manifold is supplying gas to two 1-1/2" NPT rear inlets on a burner. Each of the rear inlets supplies a maximum of 2,000,000 Btu/h.

Solution: The total fuel supplied is $2 \times 2,000,000 = 4,000,000$ Btu/h.

Referring to Table 3.2, the choice for manifold size is 2-1/ 2"; the choice for main gas pipe size is 2".

Profile plate sizing

Profile plates are required to ensure sufficient air pressure drop across the burner. An example of profile plate layout is shown in Figure 3.4 on the next page

It is essential that even air flow is delivered to the burner to obtain optimum performance.

To calculate the profile gap sizes, you will need to know the following:

- 1. SCFM = Total air flow around and through the burner in cubic feet per minute.
- 2. Design pressure drop across the burner.
- G_p = Profile gap area required per flow from Figure 3.3; see Table 3.4 for corrections at higher or lower burner air inlet temperatures.

Profile area (Ag) =
$$\frac{\text{SCFM x G}_{p}}{1000}$$

Where: Ag = Area in square inches of the gap between the profile plates and the burner.

The areas on the sides of the burners should first be calculated based on a fixed gap of 2 inches. Next, calculate the gap size required on the top and bottom to obtain the required profile gap area.

Example: Size a profile plate for a seven-foot long AH-MA v2.0 burner. Air flow around and through the burner will be 60,000 SCFM. The design pressure drop is 0.7"w.c.

NOTE: Use a burner wing width of 9.6 inches (226 mm) for profile gap sizing on top and bottom.

From Figure 3.3:
$$G_p = 43$$

$$Ag = 60,000 \times 43 = 2580 \text{ in}^2$$

Calculate gap sizes:

Side Area = $2 \times 2" \times 9.6" = 38 \text{ in}^2$

Area Top and Bottom = $2580 - 38 = 2542 \text{ in}^2$

Therefore, Top and Bottom Gap = $2542 \text{ in}^2 = 15.1$ inches (7 x 12)* x 2 gaps

*where 7x12 = burner length in inches

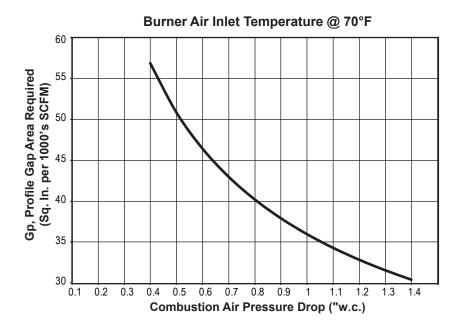


Figure 3.3 Profile Gap Area vs. Air Pressure Gap

G _p at Air Temperature = Gp from Figure 3.4 x Correction Factor										
Air Temperature, °F (°C)	0 (-18)	30 (-1)	70 (21)	150 (66)	200 (94)	250 (121)	300 (149)	350 (177)	400 (204)	450 (232)
Correction Factor	0.87	0.92	1.00	1.15	1.25	1.34	1.43	1.53	1.62	1.72

Table 3.4 Profile Gap Air Inlet Air Temperature Correction

Single Burner Profile Plates

Dimensions in mm (inches)

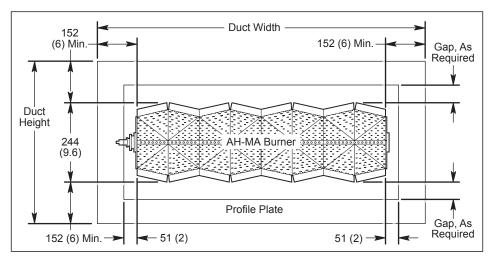
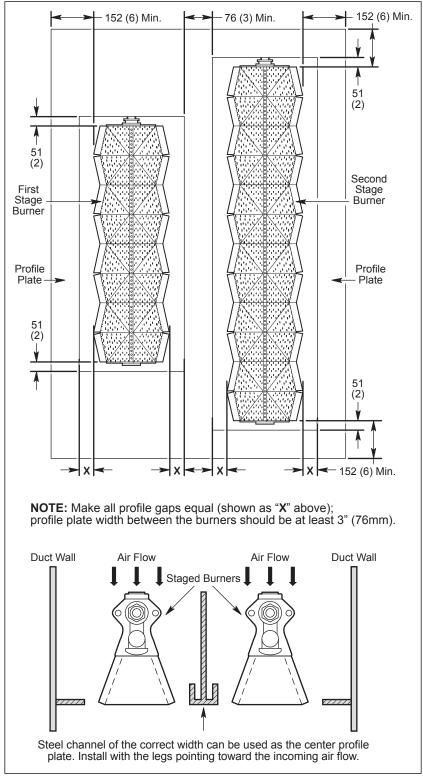



Figure 3.4

Two-Stage Burner Profile Plates Dimensions in mm (inches)

Figure 3.5

NOTE: To compensate for changes in actual air flow versus calculated, provide adjustable profile plates so that

final settings can be made in the field. Figure 3.6 shows an example of an adjustable profile plate design.

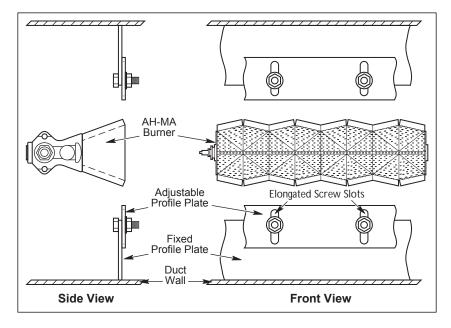


Figure 3.6 Adjustable Profile Plates

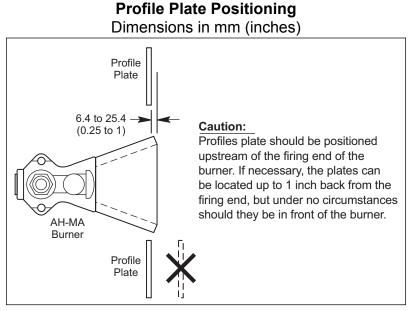


Figure 3.7

Step 2: Control Methodology

The simplest control method is fuel modulation at fixed air flow. If required turndown is greater than the burner's capabilities, there are two options, air modulation and burner fuel staging.

Air Modulation

To lower the minimum input of the burner, the air flow can be decreased as long as the pressure drop across the burner does not go outside of the operating limits given in the "Operating Ranges" chart in Datasheet 160. The air flow can be changed with a two-speed air handling system or a modulated system. As an example, the air flow could be turned down from a pressure drop of 1"w.c. to 0.25"w.c., giving a total air turndown of 2:1. This could extend the minimum input level from 20,000 to 13,000 Btu/h/ft.

Figure 3.8 Staged Burners

Burner Fuel Staging

To further increase the burner turndown, AH-MA v2.10 burners can be fuel staged. This can be done by installing two or more separate burners in a duct, each with its own gas control valve, or by dividing a single burner assembly into separate zoned sections. For example, to double the effective turndown, two burner sections may be "staged" as shown in Figure 3.8 on the previous page. If more heat is required, stage 2 is lit by simply supplying gas to it. It will pilot from the adjacent stage.

 Lockouts must be provided to shut off gas flow to stage 2 unless flame is proven on stage 1.

A staging divider plate (p/n 76506) must be installed between the burner bodies to seperate the different gas feed sections.

NOTE: Ignition performance is enhanced if the gas inlet to stage 2 is as close to the piloting section as possible.

Step 3: Ignition System

AH-MA v2.10 Air Heat burners have an integral sparkignited gas pilot for lighting the burner. The pilot fuel is fed into the pilot end casting, which is separate from the main fuel. A pilot adjusting valve is required to adjust the pilot gas flow (Eclipse p/n 12659 is recommended). The needed pilot capacity is 20,000 Btu/h, but the pilot will operate equally well at higher or lower inputs. The pilot is shut off after successfully igniting the main burner to protect the igniter.

Local safety and insurance requirements demand that you limit the maximum time that a burner takes to ignite. These time limits vary from country to country. For the USA, the time limit is 15 seconds; for Europe, it is typically 3 seconds. Local requirements may require shorter time limits. Verify local regulation and insurance requirements with the authorized jurisdiction.

The time that a burner takes to ignite depends on:

- The distance between the gas shut-off valve and the burner
- The air pressure drop across the burner
- The gas flow at start conditions.

Step 4: Flame Monitoring System

A flame monitoring system consists of two main parts, a flame sensor and a flame safeguard.

Flame Sensor

There are two types of flame sensors you can use for an AH-MA v2.1 Air Heat burner, a UV scanner and a flame rod.

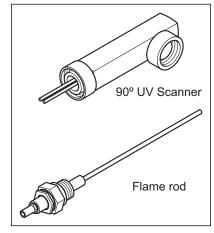


Figure 3.9

You can find information on UV scanners in:

- Instruction Manual No. 852; 90° UV scanner
- Instruction Manual No. 854; straight UV scanner
- Instruction Manual No. 855; solid state UV/IR scanner
- Instruction Manual No. 856; self-check UV scanner.

You can find information on flame rods in:

• Bulletin/Info Guide No. 832.

Flame Monitoring Control

The Flame Monitoring Control processes the signal from the flame rod or UV scanner and controls both the startup sequence and the main gas shut-off valve sequence.

For flame safeguard selection there are two options for staged burners depending on the application requirements:

- Flame safeguard for each burner: if one burner goes down, only that burner will be shut off
- Multiple burner flame safeguard: if one burner goes down, all burners will be shut off.

Eclipse Inc. recommends the use of flame monitoring control systems which maintain a spark for the entire trial for ignition time when using UV scanners. Some of these flame monitoring models are:

- Veri-Flame series; see Bulletin/Instruction Manual No. 818
- Bi-Flame series; see Bulletin/Instruction Manual No. 826
- Multi-Flame series; see Bulletin/Instruction Manual No. 820.

Burners over 10 lineal feet include flame supervision at the far end. If pilot ignition is being used, two flame supervision units are required, one for the pilot and one for the far end. Per NFPA 86, if using direct spark on the main flame, only flame supervision at the far end is required providing ignition can be accomplished within 15 seconds.

Step 5: Gas Valve Train Selection

Figures 3.9 and 3.10 illustrate gas valve trains for single and staged burner systems respectively.

The typical main gas valve train for a staged burner has the same valve layout as a single burner except each burner has an individual solenoid valve to independently shut down each section. A common gas shut-off valve train can be used.

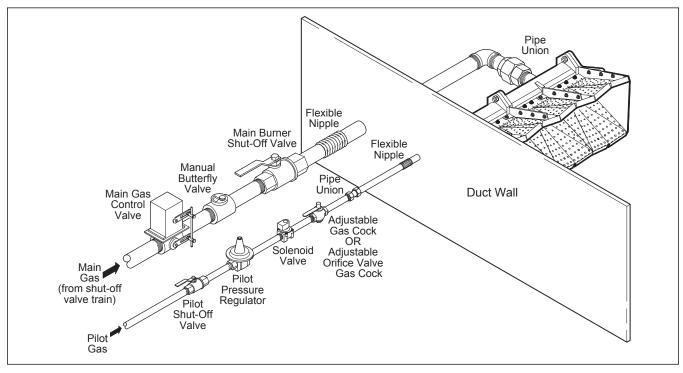
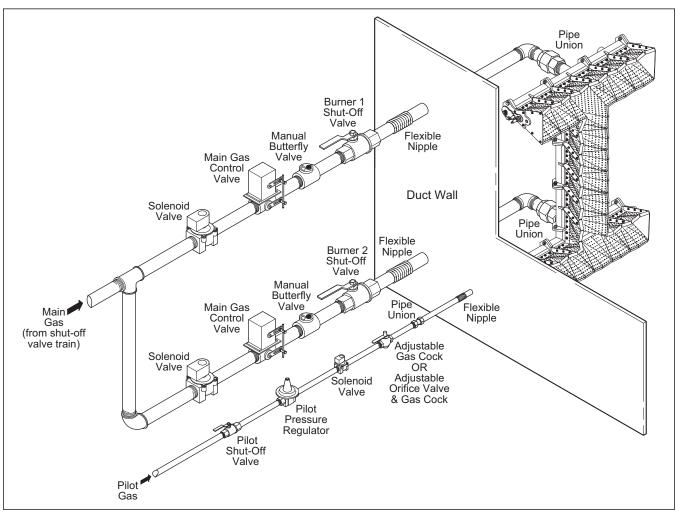



Figure 3.10 Single-Staged Burner Valve Layout

Figure 3.11 Staged Burner Valve Layout

NOTE: A single pilot fuel feed can be used when the staged burners are piloted by the adjacent burners.

Consult Eclipse

Eclipse can help you design and obtain a main gas shutoff valve train that complies with the current safety standards.

The shut-off valve train must comply with local safety standards set by authorized jurisdiction.

For details, please contact your local Eclipse representative or Eclipse Inc.

NOTE: Eclipse supports NFPA regulations (two shut-off valves) as a minimum standard for main gas "safety shut-off valves."

Appendix

Conversion Factors

Metric to English

From	То	Multiply By
actual cubic meter/h (am³/h)	actual cubic foot/h (acfh)	35.31
normal cubic meter/h (Nm³/h)	standard cubic foot /h (scfh)	38.04
degrees Celsius (°C)	degrees Fahrenheit (°F)	(°C x 9/5) + 32
kilogram (kg)	pound (lb)	2.205
kilowatt (kW)	Btu/h	3415
meter (m)	foot (ft)	3.281
millibar (mbar)	inches water column ("w.c.)	0.402
millibar (mbar)	pounds/sq in (psi)	14.5 x 10 ⁻³
millimeter (mm)	inch (in)	3.94 x 10 ⁻²
MJ/Nm ³	Btu/ft ³ (standard)	26.86

Metric to Metric

From	То	Multiply By
kiloPascals (kPa)	millibar (mbar)	10
meter (m)	millimeter (mm)	1000
millibar (mbar)	kiloPascals (kPa)	0.1
millimeter (mm)	meter (m)	0.001

English to Metric

From	То	Multiply By
actual cubic foot/h (acfh)	actual cubic meter/h (am³/h)	2.832 x 10 ⁻²
standard cubic foot /h (scfh)	normal cubic meter/h (Nm³/h)	2.629 x 10 ⁻²
degrees Fahrenheit (°F)	degrees Celsius (°C)	(°F - 32) x 5/9
pound (lb)	kilogram (kg)	0.454
Btu/h	kilowatt (kW)	0.293 x 10 ⁻³
foot (ft)	meter (m)	0.3048
inches water column ("w.c.)	millibar (mbar)	2.489
pounds/sq in (psi)	millibar (mbar)	68.95
inch (in)	millimeter (mm)	25.4
Btu/ft ³ (standard)	MJ/Nm ³	37.2 x 10 ⁻³