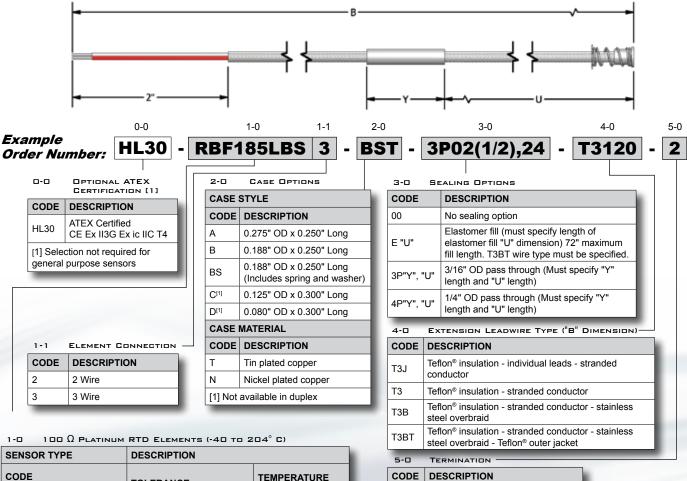
Miniature Temperature Sensors

For miniature bearing and babbitt bearing applications

- General purpose and ATEX-certified designs available
- Supplied in multiple case styles
- Custom designs on request
- Rugged construction
- RTD and Thermocouple Types available
- Pass throughs, elastomer fill and accessories
- Standard four day delivery
- Application proven



ATEX Certification Available

Pyromation's miniature sensors are designed to measure the critical temperature of the metal bearing shoes operating in generators, turbines and other rotating equipment. Monitoring the bearing temperature of rotating equipment is very important in preventing machine failures caused by the breakdown of the lubricating oil when it becomes too hot. Pyromation not only provides a cost-effective line of miniature sensors for these applications, they have experienced sales and engineering support available to assist you in finding the best way to measure temperature in your equipment.

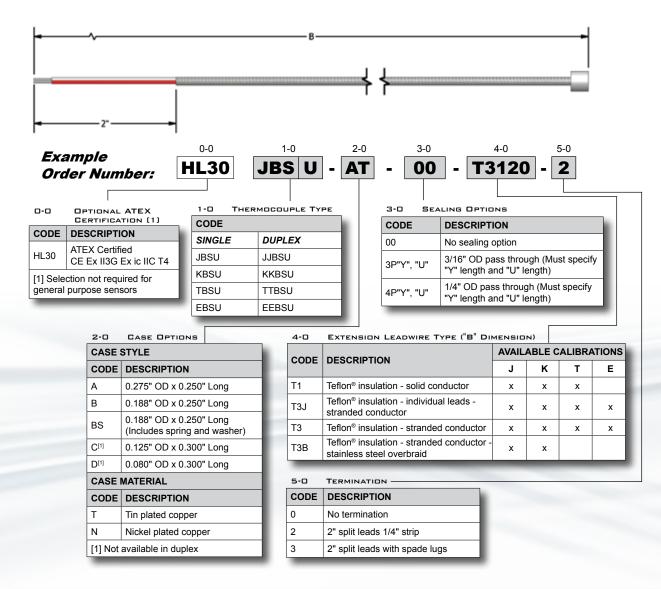
speed, service, solutions beyond measure

CODE SINGLE DUPLEX		TOLERANCE	TEMPERATURE		
			COEFFICIENT		
RBF185LBS	RBF285LBS	± 0.30 °C [± 0.12% X R ₀]	α = 0.003 85 °C $^{\text{1}}$		
RBF192LBS	RBF292LBS	± 0.30 °C [± 0.12% X R ₀]	α = 0.003 92 °C $^{\text{-1}}$		

	RBF285LBS	± 0.30 °C [± 0.12	% X R ₀]	$\alpha = 0.003.85 ^{\circ}\text{C}^{-1}$		2 2	split le	eads 1/4" strip		
	RBF292LBS	± 0.30 °C [± 0.12	% X R ₀]	α = 0.003 92 °C $^{\text{1}}$		3 2	" split le	eads with spade lugs		
		_	_			_	_	_		
										_
			CASE	E STYLE A	CASE	STYLE B	5	CASE STYLE C	CASE STYLE D	
9	Ω Platinun	n RTD		680999000000						_
1	= 0.00385	° C -1	and the second	and the second division of the second divisio			-	-		ī
1	= 0.00392 '	°C -1	Ø 0.275"	OD x 0.250" L	Ø 0.188"	OD x 0.25	0" L	Ø 0.125" OD x 0.300" L	Ø 0.080" OD x 0.300)"
					Flange 0.25	0" OD x 0.0	030" L			

0

0


No termination

	α = 0.00392 °C -1	Ø 0.275" OI	O x 0.250" L		D x 0.250" L OD x 0.030" L	Ø 0.125" O	D x 0.300" L	Ø 0.080" OD	x 0.300" L
CODE	DESCRIPTION	Single	Duplex	Single	Duplex	Single	Duplex	Single	Duplex
ТЗЈ	Teflon [®] insulation - individual leads - stranded conductor	2 or 3 wire 24 AWG	2 or 3 wire 28 AWG	2 or 3 wire 24 AWG	2 or 3 wire 28 AWG	2 or 3 wire 28 AWG	2 or 3 wire 30 AWG	2 or 3 wire 30 AWG	N/A
тз	Teflon [®] insulation - stranded conductor	2 or 3 wire 24 AWG	2 or 3 wire 28 AWG	2 or 3 wire 24 AWG	2 or 3 wire 28 AWG	2 or 3 wire 28 AWG	2 or 3 wire 28 AWG	N/A	N/A
тзв	Teflon [®] insulation - stranded conductor - stainless steel overbraid	2 or 3 wire 24 AWG	2 or 3 wire 28 AWG	2 or 3 wire 24 AWG	2 or 3 wire 28 AWG	N/A	N/A	N/A	N/A
тзвт	Teflon [®] insulation - stranded conductor - stainless steel overbraid - Teflon [®] outer jacket	2 or 3 wire 24 AWG	2 or 3 wire 30 AWG	2 or 3 wire 24 AWG	2 or 3 wire 30 AWG	N/A	N/A	N/A	N/A

Teflon[®] is a registered trademark of E.I. du Pont de Nemours and Company.

100 Ω α =

Thermocouple Types J, K, T, E		CASE STYLE A		CASE STYLE B Ø 0.188" OD x 0.250" L Flange 0.250" OD x 0.030" L		CASE STYLE C		CASE STYLE D	
CODE	DESCRIPTION	Single	Duplex	Single	Duplex	Single	Duplex	Single	Duplex
T1	Teflon [®] insulation - solid conductor	24 AWG	24 AWG	24 AWG	24 AWG	24 AWG	N/A	30 AWG	N/A
T3J	Teflon [®] insulation - individual leads - stranded conductor	24 AWG	24 AWG	24 AWG	24 AWG	24 AWG	N/A	N/A	N/A
Т3	Teflon [®] insulation - individual leads - stranded conductor	24 AWG	24 AWG	24 AWG	24 AWG	24 AWG	N/A	N/A	N/A
ТЗВ	Teflon [®] insulation - stranded conductor - stainless steel overbraid	24 AWG	24 AWG	24 AWG	N/A	24 AWG	N/A	N/A	N/A

	INSTALLATION INSTRUCTIONS								
CASE STYLE	INSTALLATION	ILLUSTRATION							
A	Install sensor just below the babbitt layer – near bearing shoe surface, then puddle the babbitt metal over the sensor tip and smooth.	BABBITT LAYER SENSOR BEARING BEARING LEADWIRE LEADWIRE							
В	This sensor is designed with a spring and retaining ring that allows for spring loading. Slide the spring and ring over the leads. Insert the sensor tip into a hole bored into the bearing shoe and push down on the retaining ring to compress the spring and secure the sensor.	BABBITT LAYER BEARING SHOE LEADWIRE RETAINING							
C & D	Bore the sensor hole in the bearing shoe near, but not touching, the babbitt surface. Insert sensor and secure by potting/bonding with epoxy.	BABBIT LAVER 3 = 0.005 (0.01mm) LEADONNE SENSOR SHOE							

Accessories								
PART NUMBER	DESCRIPTION	ILLUSTRATION						
B067901	Spring	QLLO						
B010602	Retaining Washer	Ø.						
B010801	Retaining Ring	S						

// SPEED, SERVICE, SOLUTIONS... BEYOND MEASURE®

Operating since 1962, Pyromation is the premier temperature sensor manufacturer in North America. From RTDs and thermocouples to thermowells, connection heads, transmitters, accessories and complete assemblies, Pyromation can make the right temperature sensor for your process and deliver it faster than anyone in the industry. A broad product line, industry experience, friendly customer service and quick delivery make Pyromation the best choice for your temperature measurement applications. For more information, please call us or visit www.pyromation.com.

5211 Industrial Road // Fort Wayne, IN 46825, USA 260.484.2580 // www.pyromation.com