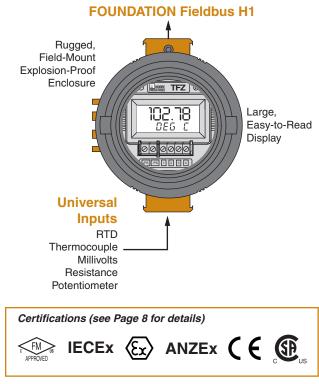
MOORE INDUSTRIES WORLDWIDE

Programmable FOUNDATION Fieldbus™ Temperature Transmitter

June 2013

Description


The TFZ Programmable FOUNDATION Fieldbus Temperature Transmitter saves wire and installation costs by allowing up to 32 field devices to be networked onto one, low cost FOUNDATION fieldbus H1 segment.

The loop-powered (2-wire) TFZ offers dozens of input and operation choices. It sets up from the control room over segment wiring using a standard FOUNDATION fieldbus configuration tool to handle 14 RTD types, 9 thermocouple types, as well as direct millivolt and resistance/potentiometer inputs. It converts the input to a FOUNDATION fieldbus H1, two-way digital communication protocol ready for interface with an AMS, DCS or PLC.

Easy-to-Order Temperature Assemblies

One simple model number is all it takes to order our complete temperature assemblies. They include your choice of general location or hazardous area connection head, RTD or T/C sensors, thermowell and process connection.

Figure 1. Universal, programmable input with FOUNDATION fieldbus digital communication protocol.

*All product names are trademarks of their respective companies.

Available in a variety of mounting styles, the TFZ installs on a pipe or surface in the field, or on a DIN-rail and relay track in a multi-unit enclosure or cabinet.

Features

-

• Industry-standard FOUNDATION fieldbus communication. Featuring a bus connection in accordance with IEC 61158-2 and EN 50170, part 4, the TFZ can be installed in the same segment with all standard FOUNDATION fieldbus devices.

Exceptional measurement

accuracy. 20-bit input resolution delivers precise, industry-leading measurements.

- Easy-to-read, customizable local display. The large display features alphanumeric characters that can be read easily in the field. It can be customized to display the process variable or the output in user-selectable engineering units.
- **Delivers valuable diagnostic information.** Standard FOUNDATION fieldbus diagnostics provide indication of unwanted process and transmitter conditions.
- Remote configuration and diagnostics. The ideal universal plant standard, the TFZ offers versatile input and operation choices, and still can be configured and troubleshooted quickly over the segment, from the control room.
- Long-term stability. Provides up to 5 years between scheduled calibrations.
- Advanced RFI/EMI protection and ambient temperature compensation. Guard against environmental factors that can quickly degrade measurement accuracy.

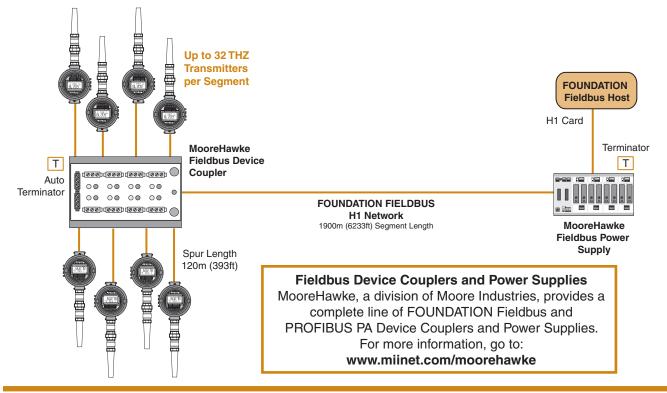
Multidrop Networks Save Wiring Costs

The TFZ is an H1 Basic Device that conforms to the H1 Standard (IEC61158-2, 31.25 kbits/s) and is implemented as a Group 3 (network configurable), Class 31* device.

Acting as a Slave device within a FOUNDATION fieldbus H1 network, up to 32 TFZ transmitters connect in a fieldbus (Figure 2) segment. This means you can save time and money by using a single twisted pair, instead of individual loops, to transmit information from multiple devices.

Function Blocks

Resource Function Block (RB)—Contains diagnostic information, hardware and electronics information (memory, manufacturer identification, device type, software tag) and display configuration parameters.


Temperature Transducer Block (TB)—Contains temperature measurement data, including sensor and terminal temperature. It also includes information about the sensor type, engineering units, linearization, re-ranging, damping, temperature compensation and diagnostics. **Analog Input Block (AI)**—Processes measurements from a sensor and makes them available to other function blocks. The output value from the AI block is displayed in engineering units and contains a status indicating the quality of the measurement.

Sets Up from a Hand-Held, DCS or Asset Management System (AMS)

Using its Function Blocks, the TFZ can be remotely programmed in minutes, or interrogated at any time, over the segment using a standard FOUNDATION fieldbus configuration tool. Examples of programmable parameters include:

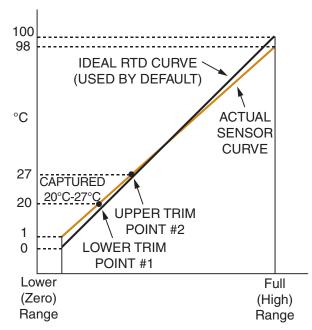
- Identification Information—Product designation/ part number, tag, descriptor, installation date, slave address and FOUNDATION fieldbus identification number.
- **Input/Output and Ranges**—Sensor type, span and zero values, lower/upper output ranges and alarm output status.
- * Class 31 indicates that the device might publish and/or subscribe data and/or is a client.

Figure 2. The TFZ transmitter's data and configuration can be viewed, tested and changed from the control room using a HART hand-held configurator, DCS or AMS equipped with a standard FOUNDATION fieldbus configuration tool.

Programmable FOUNDATION Fieldbus™ Temperature Transmitter

- Set Damping Time—Eliminate imprecise readings caused by noise and other insignificant process fluctuations by setting a damping time between 1-30 seconds.
- View Real-Time Process Values—View the existing process value (in the appropriate engineering unit), and lower and upper range values as a percentage of output span.

Non-Volatile Memory


If power to the transmitter is lost, the unit resumes normal operation with the parameters you've configured upon reapplication of power.

Total Sensor Diagnostics

TFZ transmitters perform continuous sensor diagnostics. This patented Moore Industries feature can save you from costly lost production time and hours of troubleshooting. If the sensor breaks or otherwise stops sending a signal during operation, the transmitter instantly displays the type and location of the error on its display.

Precise Linearization and RJC

The TFZ uses an advanced linearization method to minimize conformance error. Its Reference (Cold) Junction Compensation techniques produce stable readings even in fluctuating ambient temperature conditions. For non-linear inputs, create custom linearization curves using the fieldbus configuration tool. Figure 3. The TFZ can be set to measure the segment most critical to the process.

Trims to Respond to Specific Sensor Curve Segments

Most transmitters zero and span values can be calibrated to measure a specific range within a sensor's overall curve capability. However, for even greater measurement accuracy, our transmitter's trim capabilities go much further.

The TFZ can be trimmed with two data points within the selected zero and span measurement range. This advantage allows a complete process range to be monitored, while placing measurement emphasis on a specific segment of the range most critical to the process.

In Figure 3, the actual sensor curve is used in place of the ideal RTD curve between 20°C and 27°C. This provides incredible precision over a limited portion of the span, while measuring the remainder of the span with the TFZ's usual outstanding accuracy.

Specifications

Performance Input Accuracy: Refer to	Performance	Power Supply Require-	Display	Two-digit FOUNDATION
Table 4	(Continued)	ment: 9-32Vdc, 10.5mA	(Continued)	Fieldbus address indicator
Overall Accuracy: The over-		typical 12.07mA maximum		Format: Two rows of five
all accuracy of the unit is the		under normal operation;		alphanumeric characters
input accuracy. It includes		18mA maximum under fault		Decimal Points: Automati-
the combined effects of lin-		conditions		cally adjusted decimal point
earity, hysteresis, repeatabil-		Supply Range: 9-32V,		with a user selectable maxi-
ity and adjustment resolution.		Foundation Fieldbus Ap-		mum up to four places
It does not include ambient		proved		Range: -99999 to 99999
temperature effect. For T/C		Load Effect: N/A		Minimum Display Span:
input, add the RJC error.		T/C Input Impedance:		1.00
Reference Junction		40Mohms, nominal		
Compensation: ±0.45°C		Excitation Current: RTD	Ambient	Operating and Storage
(±0.81°F)		and Ohms,	Temperature	Range: -40°C to +85°C
Stability: Refer to Table 1		250 microamps, ±10%		(-40°F to +185°F)
Isolation: 500Vrms between		RTD Lead Wire Resis-		Relative Humidity:
input, output and case con-		tance Maximum: RTD		0-95%, non-condensing
tinuous, and will withstand		resistance + 2X lead wire		Ambient Temperature Ef-
a 500Vac dielectric strength		resistance		fect: Refer to Table 2
test for one minute (with no		<4000 ohms; Recommend-		Effect on Reference
breakdown)		ed lead wire resistance for		Junction Compensation:
Step Response Time:		three wire connections: <35		±0.005°C of input span/°C
500msec, maximum,		ohms/wire; 10 ohm copper		change of
256msec typical from the		sensor <5 ohms		ambient temperature
time an input is applied until		Sensor Lead Resistance		RFI/EMI Immunity:
the time the corresponding		Effect: 1.0 ohm in reading/		20V/m@80-1000MHz,
floating point processed vari-		ohm of lead resistance for		1kHz AM when tested
able is available to be read		2-wire sensors; 1.0 ohm		according to IEC 1000-4-
by other		in reading/ohm of lead of		3-1995 with 0.5% of span
FOUNDATION Fieldbus		unbalanced resistance for		or less
devices		3-wire sensors; no effect on		Startup Time:
Over-voltage Protection:		4-wire sensors		Performance falls within
Input, ±5Vdc peak,		Resolution: Input, 20-bit		specification 8 seconds
maximum		nooolation input, 20 bit		after power is applied
Digital Input Filter:	Display	Type: Top Row, 10mm (0.4		Noise Rejection:
50/60Hz (user-selectable)	Biopiay	in) high black digits on a		Common mode,
		reflective background; Bot-		100dB@50/60Hz; Normal
		tom Row, 6mm (0.225 in)		Mode: Refer to Table 3
		high digits on a reflective		
		background;	Woisht	210π (7.4 cz)
		Saongi Guria,	weight	210g (7.4 oz)

Table 1. Long-Term Stability

Stability (% of Max.	Input to FOUNDATION Fieldbus H1			
`Span)	1 yr	3 yrs	5 yrs	
T/C, mV	0.008	0.014	0.019	
RTD, Ohm, Pot	0.047	0.081	0.104	

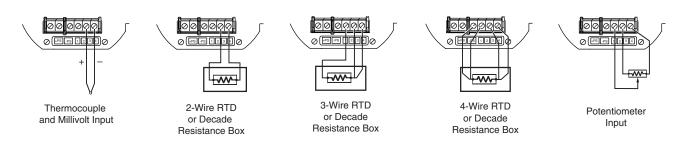
 Table 2. Ambient Temperature Effects

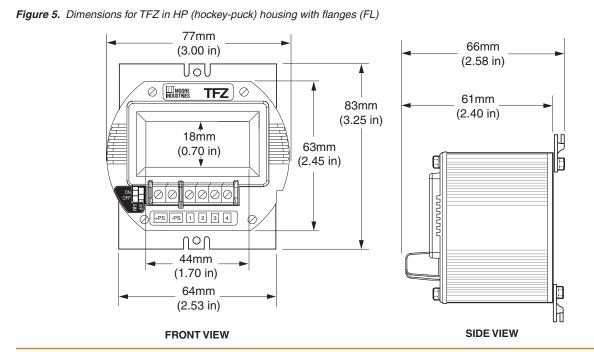
Sensor Type	Digital Accuracy per 1°C (1.8°F) Change in Ambient	
RTD	0.003°C	
T/C	0.003°C + 0.005% of reading	
Millivolt	0.005mV + 0.005% of reading	
Ohm	0.002 ohms + 0.005% of reading	

Table 3. Normal Mode Rejection Ratio

ре	Max. p-p Voltage Injection for 70dB at 50/60Hz				
C, E	150mV				
S, B	80mV				
300 ohms	250mV				
1000 ohms	1V				
ms	500mV				
าms	100mV				
mV					
250-1000	1V				
62.5-250	250mV				
31.25-62.5	100mV				
	250-1000 62.5-250				

TFZ Programmable FOUNDATION Fieldbus™ Temperature Transmitter


Input	Туре	α	Ohms	Conformance Range	Minimum Span	Input Accuracy	Maximum Range	Sensor-to- Transmitter Matching
		0.003850	100		10°C ∙ (18°F)		-240 to 960°C -400 to 1760°F	Up to
			200			±0.1°C (±0.18°F)		±0.014°C (±0.025°F)
			300	-200 to 850°C				system accuracy*.
			400	-328 to 1562°F				*High-accuracy measurements
			500					are achieved by using a 4-wire, 1000
	Platinum		1000					ohm platinum RTD with a
	Fidununi		100		(1017)	(±0.18 P)	-150 to 720°C -238 to 1328°F	span of 100°F (50°F minimum) calibrated in our
			200					
		0.003902	400	-100 to 650°C -148 to 1202°F				
			500					
			1000					
		0.003916	100	-200 to 510°C -328 to 950°F			-240 to 580°C -400 to 1076°F	-
	Nickel	0.00672	120	-80 to 320°C -112 to 608°F			-100 to 360°C -148 to 680°F	
	Copper	0.00427	9.035	-50 to 250°C -58 to 482°F	100°C	±0.85°C (±1.53°F)	-65 to 280°C -85 to 536°F	
Ohms Poten	Direct Resistance		0-4000 ohms	0-4000 ohms	10 ohms	±0.4 ohms	0-4095 ohms	
	Potentiometer	n/a	125, 250, 500, 1k, 2k, 4k ohms	0-100%	10%	±0.1%	0-100%	
	J	n/a	n/a	-180 to 760°C -292 to 1400°F	35°C 63°F	±0.25°C (±0.45°F)	-210 to 770°C -346 to 1418°F	
	к	n/a	n/a	-150 to 1370°C -238 to 2498°F	40°C 72°F	±0.3°C (±0.54°F)	-270 to 1390°C -454 to 2534°F	
	E	n/a	n/a	-170 to 1000°C -274 to 1832°F	35°C 63°F	±0.2°C (±0.36°F)	-270 to 1013°C -454 to 1855.4°F	
	т	n/a	n/a	-170 to 400°C -274 to 752°F	35°C 63°F	±0.25°C (±0.45°F)	-270 to 407°C -454 to 764.6°F	
	R	n/a	n/a	0 to 1760°C 32 to 3200°F	50°C 90°F	±0.55°C (±0.99°F)	-50 to 1786°C -58 to 3246.8°F	
	s	n/a	n/a	0 to 1760°C 32 to 3200°F	50°C 90°F	±0.55°C (±0.99°F)	-50 to 1786°C -58 to 3246.8°F	
	В	n/a	n/a	400 to 1820°C 752 to 3308°F	75°C 135°F	±0.75°C (±1.35°F)	200 to 1836°C 392 to 3336.8°F	
	N	n/a	n/a	-130 to 1300°C -202 to 2372°F	45°C 81°F	±0.4°C (±0.72°F)	-270 to 1316°C -454 to 2400.8°F	
	с	n/a	n/a	0 to 2300°C 32 to 4172°F	100°C 180°F	±0.8°C (±1.44°F)	0 to 2338°C 32 to 4240.4°F	
Villivolts	DC	n/a	n/a	-50 to 1000mV	4mV	15 microvolts	-50 to 1000mV	


Ordering Information

Unit	Input	Output	Power	Options	Housing
TFZ Programmable FOUNDATION Fieldbus Transmitter	TPRG Programs to accept RTD, T/C, ohm and mV inputs	H1 FOUNDATION Fieldbus H1	9-32DC for General Location and Non-Incendive Applications 9-30DC for Intrinsically-Safe Applications 9-24DC for FISCO Applications (10.5mA typical; 12.07mA maximum under normal operation; 18mA maximum under fault condition)	-VTD Factory calibration with NIST traceable test report -VTB* Factory calibration using Sensor-to- Transmitter Trimming with NIST traceable test report * The -VTB option applies to units ordered with sensors and complete temperature assemblies only	 HP Hockey puck housing and spring clips DN Snap-in mounting for HP case on TS-32 DIN-rail FL Mounting flanges on HP for relay track or screw mounting FLD Mounting flanges on HP for 3½" relay track mounting BH2NG Explosion-Proof enclosure with two 1/2-inch NPT entry ports and a glass cover BH2TG Explosion-Proof enclosure with two 3/4-inch NPT entry ports and a glass cover BH3MG Explosion-Proof enclosure with two M20 x 1.5 NPT entry ports and a glass cover BH3TG Explosion-Proof enclosure with three 1/2-inch NPT entry ports and a glass cover BH3TG Explosion-Proof enclosure with three 1/2-inch NPT entry ports and a glass cover BH3TG Explosion-Proof enclosure with two 3/4-inch side-entry NPT ports, one 1/2" bottom port, and a glass cover BH3MG Explosion-Proof enclosure with two, M20 x 1.5 side-entry NPT ports, one 1/2" bottom port, and a glass cover BB3MG Explosion-Proof enclosure with two, M20 x 1.5 side-entry ports, one 1/2" bottom-entry port, and a glass cover BL3MG Explosion-Proof enclosure with two, M20 x 1.5 side-entry ports, one 1/2" bottom-entry port, and a glass cover BL3MG Explosion-Proof enclosure with two, M20 x 1.5 side-entry ports and a glass cover SB2NG 2-Hub, Explosion-Proof enclosure with two, ½-inch NPT entry ports and a glass cover SB2MG 2-Hub, Explosion-Proof enclosure with two, M20 x 1.5 entry ports and a glass cover SB2MG 2-Hub, Explosion-Proof enclosure with two, M20 x 1.5 entry ports and a glass cover SB2MG 2-Hub, Explosion-Proof enclosure with two, M20 x 1.5 entry ports and a glass cover SB2MG 2-Hub, Explosion-Proof enclosure with two, M20 x 1.5 entry ports and a glass cover SB2MG 2-Hub, Explosion-Proof enclosure with two, M20 x 1.5 entry ports and a glass cover SB2MG 2-Hub, Explosion-Proof enclosure with two, M20 x 1.5 entry ports and a glass cover

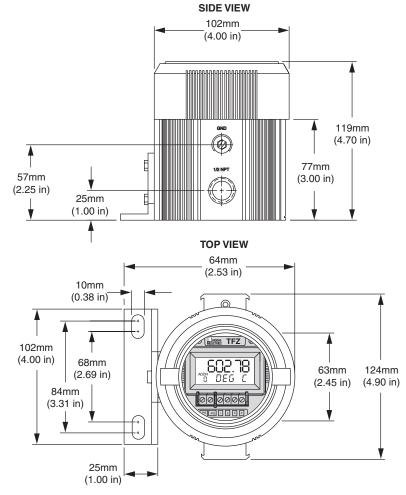
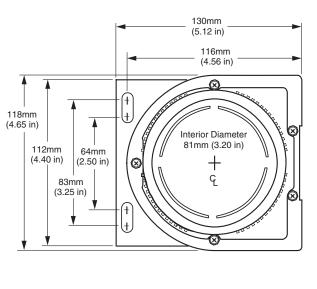
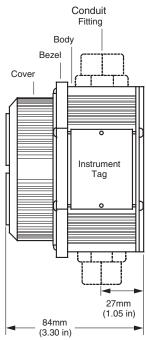

To order, specify: Unit / Input / Output / Power / Options [Housing] Model number example: TFZ / TPRG / H1 / 9-32DC [BH2NG]

Figure 4. Sensor/input connections





TFZ Programmable FOUNDATION Fieldbus™ Temperature Transmitter

Figure 7. Dimensions for TFZ in D-BOX field-mount enclosure

Certifications

TFZ

Factory Mutual (US/Canada) Intrinsically-Safe & Non-Incendive Class I, Divisions 1 & 2, Groups A, B, C & D Class I, Zone 0, AEx ia IIC T4

ATEX Directive 94/9/EC: Intrinsically-Safe & Type "n" Il 1G Ex ia IIC, T4@85°C max Il 3G Ex nA IIC, T4@85°C max

CE

CE Conformant EMC Directive 2004/108/EC – EN 61326

TFZ-HP in BH/SB2 Housing

Factory Mutual:

Explosion-Proof & Dust-Ignition Proof Class I, Division 1, Groups A*, B, C & D Class II & III, Division 1, Groups E, F & G Environmental Protection: Type 4X &IP66 T6 @60°C Maximum Operating Ambient * For Group A applications, seal all conduits within 18"

Canadian Standards Association Explosion-Proof

Class I, Division 1, Groups A*, B, C & D Class II & III, Division 1, Groups E, F & G Environmental Protection: Type 4X &IP66 T6 @60°C Maximum Operating Ambient * For Group A applications, seal all conduits within 18"

ANZEX

ATEX Directive 94/9/EC: Explosion/Flame-Proof Il 2 G Ex d IIC T6 (Tamb 60°C) Il 2 D Ex tD A21 IP66 T85°C

ANZEx (TestSafe): Explosion/Flame-Proof Ex d IIC T6 (Tamb 60°C)

